Sequential Plasmodium chabaudi and Plasmodium berghei infections provide a novel model of severe malarial anemia.

نویسندگان

  • Juliana V Harris
  • Tiffany M Bohr
  • Catherine Stracener
  • Mary E Landmesser
  • Vladimir Torres
  • Amos Mbugua
  • Chantal Moratz
  • José A Stoute
چکیده

Lack of an adequate animal model of Plasmodium falciparum severe malarial anemia (SMA) has hampered the understanding of this highly lethal condition. We developed a model of SMA by infecting C57BL/6 mice with P. chabaudi followed after recovery by P. berghei infection. P. chabaudi/P. berghei-infected mice had an initial 9- to 10-day phase of relatively low parasitemia and severe anemia, followed by a second phase of hyperparasitemia, more profound anemia, reticulocytosis, and death 14 to 21 days after infection. P. chabaudi/P. berghei-infected animals had more intense splenic hematopoiesis, higher interleukin-10 (IL-10)/tumor necrosis factor alpha and IL-12/gamma interferon (IFN-γ) ratios, and higher antibody levels against P. berghei and P. chabaudi antigens than P. berghei-infected or P. chabaudi-recovered animals. Early treatment with chloroquine or artesunate did not prevent the anemia, suggesting that the bulk of red cell destruction was not due to the parasite. Red cells from P. chabaudi/P. berghei-infected animals had increased surface IgG and C3 by flow cytometry. However, C3(-/-) mice still developed anemia. Tracking of red cells labeled ex vivo and in vivo and analysis of frozen tissue sections by immunofluorescence microscopy showed that red cells from P. chabaudi/P. berghei-infected animals were removed at an accelerated rate in the liver by erythrophagocytosis. This model is practical and reproducible, and its similarities with P. falciparum SMA in humans makes it an appealing system with which to study the pathogenesis of this condition and explore potential immunomodulatory interventions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmodium products contribute to severe malarial anemia by inhibiting erythropoietin-induced proliferation of erythroid precursors.

Low reticulocytosis, indicating reduced red blood cell (RBC) output, is an important feature of severe malarial anemia. Evidence supports a role for Plasmodium products, especially hemozoin (Hz), in suppressed erythropoiesis during malaria, but the mechanism(s) involved remains unclear. Here, we demonstrated that low reticulocytosis and suppressed erythropoietin (Epo)-induced erythropoiesis are...

متن کامل

Hemozoin Induces Hepatic Inflammation in Mice and Is Differentially Associated with Liver Pathology Depending on the Plasmodium Strain

Malaria is a global disease that clinically affects more than two hundred million people annually. Despite the availability of effective antimalarials, mortality rates associated with severe complications are high. Hepatopathy is frequently observed in patients with severe malarial disease and its pathogenesis is poorly understood. Previously, we observed high amounts of hemozoin or malaria pig...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin

We have previously reported that Plasmodium chabaudi and P. falciparum sense the hormone melatonin and this could be responsible for the synchrony of malaria infection. In P. chabaudi and P. falciparum, melatonin induces calcium release from internal stores, and this response is abolished by U73122, a phospholipase C inhibitor, and luzindole, a melatonin-receptor competitive antagonist. Here we...

متن کامل

Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections.

Phagocyte-derived reactive oxygen species have been implicated in the clearance of malaria infections. We investigated the progression of five different strains of murine malaria in gp91(phox-/-) mice, which lack a functional NADPH oxidase and thus the ability to produce phagocyte-derived reactive oxygen species. We found that the absence of functional NADPH oxidase in the gene knockout mice ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 80 9  شماره 

صفحات  -

تاریخ انتشار 2012